Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3.
نویسندگان
چکیده
Glycogen synthase kinase-3 (GSK-3) is a critical, negative regulator of diverse signaling pathways. Lithium is a direct inhibitor of GSK-3 and has been widely used to test the putative role of GSK-3 in multiple settings. However, lithium also inhibits other targets, including inositol monophosphatase and structurally related phosphomonoesterases, and thus additional approaches are needed to attribute a given biological effect of lithium to a specific target. For example, lithium is known to increase the inhibitory N-terminal phosphorylation of GSK-3, but the target of lithium responsible for this indirect regulation has not been identified. We have characterized a short peptide derived from the GSK-3 interaction domain of Axin that potently inhibits GSK-3 activity in vitro and in mammalian cells and robustly activates Wnt-dependent transcription, mimicking lithium action. We show here, using the GSK-3 interaction domain peptide, as well as small molecule inhibitors of GSK-3, that lithium induces GSK-3 N-terminal phosphorylation through direct inhibition of GSK-3 itself. Reduction of GSK-3 protein levels, either by RNA interference or by disruption of the mouse GSK-3beta gene, causes increased N-terminal phosphorylation of GSK-3, confirming that GSK-3 regulates its own phosphorylation status. Finally, evidence is presented that N-terminal phosphorylation of GSK-3 can be regulated by the GSK-3-dependent protein phosphatase-1.inhibitor-2 complex.
منابع مشابه
The neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat
Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...
متن کاملThe neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat
Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...
متن کاملGrowth hormone regulates phosphorylation and function of CCAAT/enhancer-binding protein beta by modulating Akt and glycogen synthase kinase-3.
Growth hormone (GH) regulates transcription factors associated with c-fos, including C/EBPbeta. Two forms of C/EBPbeta, liver-activating protein (LAP) and liver inhibitory protein (LIP), are dephosphorylated in GH-treated 3T3-F442A fibroblasts. GH-induced dephosphorylation of LAP and LIP is reduced when cells are preincubated with phosphatidylinositol 3'-kinase (PI3K) inhibitors. GH activates A...
متن کاملEfficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation.
BACKGROUND AND PURPOSE Glycogen synthase kinase-3 (GSK-3) affects neuropathological events associated with Alzheimeŕs disease (AD) such as hyperphosphorylation of the protein, tau. GSK-3beta expression, enzyme activity and tau phosphorylated at AD-relevant epitopes are elevated in juvenile rodent brains. Here, we assess five GSK-3beta inhibitors and lithium in lowering phosphorylated tau (p-tau...
متن کاملGlycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells
Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 35 شماره
صفحات -
تاریخ انتشار 2003